
J .  Fluid Mech. (1969), wol. 38, part 3, p p .  619-631 

Printed in Great Bribin 
619 

On the non-linear Lamb-Taylor instability 

By ALI HASAN NAYFEH 
Aerotherm Corporation, Mountain View, California 

(Received 15 November 1968 and in revised form 21 March 1969) 

A non-linear analysis of the inviscid stability of the common surface of two 
superposed fluids is presented. One of the fluids is a liquid layer with finite thick- 
ness having one surface adjacent to a solid boundary whereas the second surface 
is in contact with a semi-infinite gas of negligible density. The system is ac- 
celerated by a force normal to the interface and directed from the liquid to the 
gas. A second-order expansion is obtained using the method of multiple time 
scales. It is found that standing as well as travelling disturbances with wave- 
numbers greater than ki = k,[ 1 + $a%: + &$a4kk3 h, 

where a is the disturbance amplitude and k, is the linear cut-off wave-number, 
oscillate and are stable. However, the frequency in the case of standing waves 
and the wave velocity in the case of travelling waves are amplitude dependent. 
Below this cut-off wave-number disturbances grow in amplitude. The cut-off 
wave-number is independent of the layer thickness although decreasing the 
layer thickness decreases the growth rate. Although standing waves can be 
obtained by the superposition of travelling waves in the linear case, this is not 
true in the non-linear case because the amplitude dependences of the wave speed 
and frequency are different. A mechanism is proposed to explain the over- 
stability behaviour observed by Emmons, Chang & Watson (1960). 

1. Introduction 
Lamb (1932, $231) pointed out the unstable behaviour of the common 

boundary of two semi-infinite inviscid incompressible fluids in a normal accelera- 
tion field directed from the denser to the lighter fluid. His results indicate that, 
in the absence of surface tension and viscosity, an oscillatory initial disturbance 
grows exponentially with time. The rate of growth is given by 

[9’k’(P - P”P + P ‘ f l 4  
where g’ is the acceleration, k‘ is the wave-number of the disturbance, and p 
and p’ are the densities of the denser and lighter fluids respectively. The results 
of Lamb (1932, $267) indicate that surface tension stabilizes disturbances with 
wave-numbers above k, = [g’(p -p’) /T]4,  where T is the surface tension. 

Taylor (1950), neglecting surface tension, extended the analysis of Lamb to 
the case where the denser fluid has a finite thickness with incompressible fluids on 
both sides. Although one of the surfaces of the heavier fluid is stable, it was 
assumed initially to be flat but was allowed to distort. Lewis (1950) reported 
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experimental results on the instability of the interface of two fluids conducted 
with large accelerations normal to the interface so that surface tension effects 
can be neglected, These results agree with the analysis of Taylor within experi- 
mental scatter. 

Bellman & Pennington (1954) showed that the effect of surface tension is to 
produce a cut-off wave-number above which disturbances oscillate and below 
which disturbances grow. They also found that viscosity dampens the oscillatory 
disturbances, and diminishes the rate of growth of unstable disturbances. How- 
ever, viscosity by itself cannot make the rate of growth go to zero. Allred, 
Blount & Miller (1954) performed experiments, using two fluids with densities 
close to each other, to study the effects of surface tension. Their growth rates are 
a factor of two below those of Bellman & Pennington. 

All of these theories are applicable for short times (to amplitudes of the order 
of 0-4h, where h is the disturbance wavelength). Beyond this amplitude, Lewis 
(1950) observed that the denser fluid will form narrow thin spikes into the lighter 
fluid, while the lighter fluid forms bubbles that move into the denser fluid. To 
explain these later developments, Ingraham (1954), neglecting surface tension, 
obtained a second-order solution which shows the distortion of sinusoidal waves. 

Emmons et al. (1960) reported a combined experimental and analytical study. 
Their experimental results indicate that disturbances grow a t  the cut-off wave- 
number, k,. Moreover, disturbances corresponding to wave-numbers above kc 
exhibit an ‘overstability ’ behaviour (a standing oscillation of the waves with 
amplitude increasing in time). However, only a single oscillation was observed 
before monotonic growth occurred. In  their analysis, they neglected the lighter 
fluid and considered a semi-infinite fluid to obtain a third-order expansion. Their 
second-order term tends to infinity as the wave-number approaches k,. Moreover, 
their expansion for wave-numbers larger than k, is valid only for short times, 
and hence cannot be used to explain the overstability behaviour. 

Rajappa (1967) presented an expansion using the method of straining of co- 
ordinates (Lighthill 1949) to obtain a uniformly valid expansion for all times. 
However, his analysis is not valid near k,. Because of his invalid expansion near 
k,, he obtained an incorrect amplitude dependence for the cut-off wave-number. 

All of the non-linear analyses were carried out for standing waves in a semi- 
infinite fluid. In  this paper we consider non-linear analysis of standing as well 
as travelling waves in a finite liquid layer. We obtain a uniformly valid expansion 
for large times using the method of multiple time scales (Nayfeh 1965, 1968) 
for wave-numbers near and larger than k,. We determine a fourth-order cut-off 
wave-number. For wave-numbers less than k, we present an expansion valid for 
short times. Possible mechanisms for the explanation of the overstability be- 
haviour are discussed. 

2. Mathematical formulation 
We consider the stability of the interface of an inviscid liquid layer of thickness 

h’, and a semi-infinite gas. We assume that the second face of the liquid layer is 
always adjacent to a solid face, and the density of the gas is small compared with 
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that of the liquid. We assume that the flow is two-dimensional, and the x- and 
y-axes are in and normal to the undisturbed interface. We assume that the 
motion of the whole system is started from rest, and we consider a simple standing 
or travelling sinusoidal disturbance with amplitude a and wave-number k'. We 
non-dimensionalize distances, velocities, and time by l/k', (g'/k')8, and (g'k')-4 
respectively, where g' is the acceleration normal to the interface and directed 
from the liquid to the gas. Thus, if primes and unprimes denote dimensional 
and non-dimensional quantities respectively, then 

h = h'kl, x = k'~', y = k'y', t = (g'k')#t', $ = k'2gf-4$', (2.1) 

where $ is the velocity potential function. 
In  terms of these non-dimensional quantities, the velocity potential is given by 

dxxx + d,, = 0, (2.2) 

for - C O < X < O O ,  T > Y >  -h, $ 2 0 ,  

where ~ ( x ,  t )  is the non-dimensional surface displacement in the 
the solid/liquid interface the normal velocity vanishes, i.e. 

direction. At 

$,(x, y, t )  = 0 at y = - h. 

The liquid/gas interface moves with the liquid, 

r t - r x ~ z + d g  = 0 on Y = r(x,t). (2.4) 

If the gas pressure is neglected, then the dynamic boundary condition a t  the 

- interface is 

on y = ~ ( x ,  t ) ,  where k = k'/k,, (2.6) 

k, = (pg'/T)& (2.7) 

and kc is the linearized cut-off wave-number, i.e. 

The parameter k can be interpreted as the ratio of the surface tension force to 
the gravity force. The initial conditions are 

r(x ,  0 )  = 6 cos x, (2.8) 

rt(x,O) = 0, (2.9) 

where E = ale'. (2.10) 

Since the problem is non-linear, one cannot Fourier-analyze an arbitrary initial 
condition. Consequently, the present theory is applicable only to the case where 
the initial condition is given by (2.8). 

To find an approximate solution for small e to (2.2)-(2.9) we Fourier-analyze 
~ ( x ,  t )  and $(x,  9, t ) .  Thus, we let 

~ ( x ,  t )  = s[rl(t) eix + ?jl(t) e-ix] 

+ e2[rz(t)  e2ix + V,(t) e - 2 i ~ ]  

+ @+j*(t) + . . . , (2.11) 
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where a bar denotes complex conjugation. Hence, (2.2) and (2.3) lead to  

$(x, y, t )  = e[$,(t) eix + $,(t) eciZ] cosh (y + h) 
+ E2[q52( t )  e2iz +$2( t )  e-2iZ] cosh 2(y + h) 

+&(t)+.... (2.12) 

Substituting (2.11) and (2.12) in (2.4) and (2.5) and keeping only terms of third - 

order in E lead to * + 9, sinh h = eZf+ O(e3),  
at 

(2.13 a) 

f = $,qzcoshh+-&$y$sinhh- B#,lj,cosh 2h- q5,q1~,sinhh, 

!!!& cosh h - (k2 - 1) ql = c2g + O(e3),  

(2.13b) 

(2.14a) 
at 

g = 2$,$,cosh3h+ 2$,q5,v1sinh 2h-#k2y;?j1- 2?jl&sinh2h 

- q5ivlyi cosh h - iy:& cosb h - $ i ~ ~  sinh h, (2.14b) 

&+2$,sinh2h = -2y1$1coshh+O(e), (2.15) 
at 

@cosh2h-(4k2- l ) y 2  = -J&-q1$;sinhh+O(e), (2.16) 
at 

(2.17) 

?& = q51 cosh 2h - (& 7, + & 7,) sinh h. (2.18) 
at 

To obtain an approximate solution to (2.12)-(2.16) we use the method of 
multiple time scales (Nayfeh 1965, 1968). Thus we assume that 

711(t) = 310(TO> T2) + “2812(T0, Tz) + . . ., 
4lV) = 41o(To, T2) + ~2$1z(To> Tz) + . . . 9  

(2.19) 

(2.20) 

where To = t and T2 = e2t. We assume similar expansions for qz( t )  and q5z(t). 
Substitution of (2.19) and (2.20) in (2.13) and (2.14) leads to equations for vl0 
and whose solutions contain arbitrary functions of the time T2. These arbitrary 
functions are determined by requiring that c2ql2 and e2q512 be small corrections 
to vl0 and respectively for all To. I n  other words, q12/qlo and q512/q510 are 
bounded for all To. Since we shall be interested in second-order uniformly valid 
solutions, we need only to inspect the equations for ql2 and $12 without solving 
for them in order to  determine the arbitrary functions in ylo and $lo. I n  the next 
two sections, we will determine expansions for travelling and standing waves, 
respectively. 

3. Expansion for travelling waves 

functions. Substituting (2.19) and (2.20) in (2.13) and (2.14) leads to 
I n  this section we consider travelling waves; i.e. vl, yz, and are complex 

’Lo + sinh h = 0, 

~ c o s h h h ( k 2 - l ) T l 0  = 0, 
aT0 
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a710 

aT0 aT2 
+ q512 sinh h = f(To, T2) - ~, 

aq510 

aT0 aT2 
!!!h cosh h - (k2  - 1) v12 = g(To, T,) - ~ cosh h. 

623 

(3.3) 

(3.4) 

The equations for vzO and q520 are 

%o + 2q520 sinh 2h = - 2q10q40 cosh h, 

!?&! cosh 2h - (4k2 - 1) v20 = - +#o - yloq5;o sinh h. 

(3.5) 

(3.6) 

aT0 

aT0 

The general solutions of (3.1) and (3.2) are 

vlo = A(T2) eiuoTo, 

= - iao A (T') eiuoTo/sinh h, 

where 

Substituting (3.7) and (3.8) in (3.5) and (3.6) leads to  

CT; = (k2  - 1)  tanh h. 

a2 A 2 e2iuoTo 

(3.11) so cosh 2h - (4k2 - 1) vz0 = 0 
aTLl 2 sinh2 h 

- gi A 2 e2iuoTo. 

The solutions of (3.10) and (3.11) are 

vz0 = B(T,) eifiTo + ~ A 2 s  e2iuo,To (3.12) 

q520 = - m h  ip B(T,) eifiTo +- sinh icr, 2h [cothh-- g' #]A2e2iu0To, (3.13) 

where p2 = 2(4k2 - 1) tanh 2h, (3.14a) 

p2 - 4a; 

tanh 2h 
sinh2 h 

S = -4~0thh-- + 2 tanh 2h. 

Elimination of @12 from (3.3) and (3.4) yields 

(3.14 b)  

(3.15) 

Using (2.13b), (2.14b), (3.7), (3.8), (3.12)-(3.14), we get from (3.15) 

O 0, (3.16) -- + aill2 = ( -  2ia0A' - ~ ( T O C T ~ A ~ A )  eiu 
aTg 
8% 

where 
2 cosh 3h 

(T - -  - ( pp& ~ [ coth h + 2 coth 2h + tanh h ( sinh sinh 2h - 5 ) ]  

- (2 coth 2hcothh-t sinh 2cosh3h h sinh 2h )+8-@2tanhhlcg 
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The ratio of v12 to qlo is unbounded as To +- 03 because the particular solution 
of (3.16) is proportional to 2u0(iA'+ 4u2A2B) Toexp (iuoTo). In  order that 
vl2/vl0 be bounded for all To, we require that 

iA' + 4u2A2A = 0. (3.18) 

Letting A(T,) = &C(T,) [expii3(T2)] in (3.18) leads to 

C(T,) = constant, 

4T2)  = C2u2T2+ do, 

(3.19) 

(3.20) 

where 0, is an arbitrary constant. 
Using the initial conditions (2.8) and (2.9) we find that 

U; s 
p2 - 4 4  

v(x,  t )  = 6 cos (x + ut) + $52 ___ [cos 2(2 + at) - cos (22 +,41 + 0 ( € 3 t ) ,  

(3.21) 

where = a 0 + E 2 ~ , + 0 ( € 3 ) .  (3.22) 

I n  (3.21) we assumed that B(T2) is a constant within the order of error indicated. 
It is clear that, for positive u& (3.21) represents travelling oscillatory waves with 
wave speeds of a and &. On the other hand, for negative @) travelling waves are 
not possible, and disturbances are unstable as will be shown in the next section. 
Expansion (3.21) is not valid when go = O(e)  because e2u2 and go are of the same 
order, and u .+ GO as uo -+ 0. Thus, we cannot determine the cut-off wave-number 
from (3.22). We will determine the cut-off wave-number, and an expansion valid 
when a. = O(B)  in $55 and 6, respectively. 

If the layer thickness is infinite or k' -+ 00; i.e. h -+ 03, then 

€2 k2- 1 
2 2k2+ 1 

v(x, t )  -+ € cos (x + d) - ~ - [cos2(x+ut)-co~(2x+pUt)]+O(~~t) ,  (3.23) 

(3.24) 

Moreover, if k -+ co (i.e. capillary waves), then 

€2 

8 
~ ( x ,  t )  --f 6 cos (x + ut) - - [cos 2(x + ut) - cos (2x + 2#k t ) ]  + 0(e3 t ) ,  (3.25) 

u = k [ 1 - 4 .  (3.26) 

4. Expansion for standing waves 

The general solutions for vlo and 
In  this section, we consider standing waves; i.e. vl) v2, q51 and q52 are real. 

are 

vlo = A(T2) eiUoTo + B(T2) e-i"oTo, (4.1) 
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where u; = ( k 2 -  1) tanhh. Using (4.1) and (4.2), we find that the solutions of 
(3.5) and (3.6) are 

(4.3) I g; S - 
- (A2 e 2 i ~ 0 T 0  + A2 e--%iooT0) 

720 - p2 - 4 4  

+-tanh2h 2a; 2+- 1 A 2  +- B(T2) eiaTo + B(T2) e-ipTo, 
P2 ( smh2 h) 

Substituting (4.1)-(4.4) in (3.15) leads to 

I -- i2'\2+vt712 = ( -  2ia0A'- 32a0B2A2A) eiUoTo+ (%aOA'- 32~082~2kt)e-iuoTo 

+terms proportional to [exp ( 3ia0T0), exp ( ? iuoTo k ipT,)] ,  
(4.51 
\ I  

+cothh+coth2h+tanhh (sinriP:k 2h 

--f cr-% ( 2+- sink2h) (cothh+tanhh)tanh2h-+k2tanhh/a; 
2 P  

1 cosh3h 
2 sinh h sinh 2hf I) - fr ~ 0 t h  h ~ 0 t h  2h - - 

I n  order that q12/ylo be bounded for all To, we require the vanishing of the 
coefficients of efiUoTo on the right-hand side of (4.5). Thus, 

iA'+ 168,A2A = 0. (4.72 

Letting A(T2) = frC(T2)expi6'(T2), where C and 6' are real functions, we get 

C(T,) = constant, 

8(T2) = 4c2ii2T2 + 6',, 

where 8, is an arbitrary constant. 
Using the initial conditions (2.8) and (2.9), we get 

q ( x ,  t)  = cos at cos + € 2 q t )  cos 2x + 0 ( € 3 t ) ,  (4.10a) 

1 u;s 
4p2-4cr; 4 P2 

P(t) = -~ (cos 2at  - cospt) +- la'( - 2 + ___ (1-cospt) (4.10b) 

and = a ,+s2~ . ,+0(~3) .  (4.11) 

The function B(T,) is assumed to be a constant in (4.10) within the order of 
error indicated. If v; is positive, and not near zero, (4.10) is valid for times as 
large as O ( E - ~ ) ,  and represents oscillatory standing waves with frequencies u 
and p. On the other hand, if cr; is negative, (4.10) represents growing waves, and 
it is valid only for short times. As time increases, the second-order term becomes 
of the same order and then dominates the first-order term contrary to our 

40 Fluid Mech. 38 
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assumptions about the orders of magnitude when we carried out the expansions. 
Moreover, (4.1 1) is not valid when k - 1 = O(e2) because, as k + 1, c -+ 00. We 
will obtain an expansion valid when k - 1 = O(e2)  in 0 6. 

Limiting cases 

For an infinite layer thickness or k’ + co, i.e. h -f co, 

1 k2-1 1 k2-1 [ 42k2+1 44k2- 1 
?jqx,t) = EC0sctCOSx+E2 ---__ (cos 2ct - cos pt) + - ~ (1  - cospt) 

x cos2x+O(s3t), (4.12) 

(4.13) 
€2 

v = co ( 1 - 16 p) + 0 ( € 3 ) ,  

9 k2 3k2 k2- 1 
+-+2--- 4k2-1 2k2+1 4k2-1‘ 

p=-- ( 4 . 1 3 ~ )  

Equations (4.12) and (4.13) agree with those of Rajappa (1967). 
Squaring (4.13) yields 

r 2  = o; ( 1 - -  C P )  + (4.14) 

Although c+co, e2 tends to a finite value. Therefore, Rajappa assumed 
(4.12) and (4.14) to be valid for all k. Letting c2 = 0, he obtained the following 
equation for the cut-off wave-number : 

k2 = 1 + &c2 + O(e3).  (4.15) 

However, although c2 is finite as Ic + 1,  it is still not valid when k 2 -  1 = O($) 
because the order-of-magnitude assumptions used in carrying out the expansion 
do not hold. Not only is the ratio of the second term to the first term not much 
smaller than one, but it may be much larger than one. Moreover, expanding 
(4.12) and (4.13) for small et a t  k = 1 gives 

7 = E (  1 + cos x + &c3 (COS 2.63t - 1) cos 3x, (4.16) 

whereas the straightforward expansion a t  k = 1 yields 

7 = E( 1 + &e2t2) cos x + &c3 (COS 2.6% - 1) cos 3%. (4.17) 

Hence the expansions (4.12) and (4.13) are not valid when k2- 1 = O(e2) ,  and 
consequently the cut-off wave-number given by (4.14) is incorrect. 

If we expand the cos ot and cos 2at in (4.12) for small E ,  we get 

q(z,t) = ECOSr0tCOSx+€2 [ ; ;L2;; (cos 2c0t  - cospt) 

“Uo 
(1 - cosput) cos 2x + ~ Pt sin cot cos x. 1 k2-1 +-- 4 4k2- 1 

(4.18) 3 16 

‘The first two terms in (4.18) agree with those obtained by Emmons et al. (1960), 
and the third term here agrees with a similar term in their third-order expression. 
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It is clear that, for positive U& the third term in (4.18) is of the same order as 
the first- and second-order terms when e2t = O(1) and et = O ( l ) ,  respectively. 
Therefore this expansion is valid only for short times, and breaks down for 
times as large as O ( 8 ) ;  consequently it cannot be used to explain the over- 
stability behaviour observed by Emmons et al. (1960). 

If k + a, we get the capillary waves 

(4.19) 

where p2 = 8k2, u = k( 1 - &'). (4.20) 

€2 

16 7(x,  t )  = cos Ut + - (1 + cospt - 2 cos 2gt) cos 2x+ 0 ( € 3 t ) ,  

5. Stationary solution, cut-off wave-number 
For stationary solutions, (2.4) and (2.5) become 

#ll = #X7W 

7 + k27X,(l + 7:)P = $(#: + #;I 

5%Y) = E # g ( x , Y / ) + E 3 # 1 ( x , Y ) + . . . 7  

k2= 1+E2a2+e4a4+ .... 

on y = ~ ( x ) .  We let ~ ( x )  = e cos x + e3v3 + e575 + . . . , 

Substituting (5.3)-(5.5) in (2.2),  (5.1) and (5.2), we find that 

#,(x,y) = 0 for n = 0,1 ,2 ,  .... 
The equation for v3 is 

7; +q3 = (a2- $) cosx+ $ cos 32. 

In  order that be bounded for all x, and hence yield a uniformly valid ex- 
pansion for all x, we require the vanishing of the secular producing term in (5.7). 
Hence 

a2 = #. (5.8) 

(5.9) The solution of q3 is r3 = -& cos 32. 

With (5.9) the equation for q5 becomes 

7; + q5 = (a4 +&) cos x + higher harmonics. (5.10) 

In  order that v5/r1 be bounded for all x, we require that 

a4 = -x 512- (5.11) 

Summarizing, the cut-off wave-number is given by 

k2 = l+&z2-&e4+O(e6); (5.12) 

or in dimensional quantities: 

k'2 = kt[l+ ja2kE +&a4k:] + O(as). (5.13) 

This cut-off wave-number is different from the one obtained by Rajappa (1967). 
40-2 
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6. Expansion valid near Ic = 1 

As discussed in §§ 3 and 4, expansions (3.21) and (3.22) for travelling waves, 
and (4.10) and (4.1 1 )  for standing waves are valid for times as large as (e-2) if a$ 
is positive and not near zero. As go + 0 ( k  + l ) ,  a and B + m. When Ic - 1 = O(e2) ,  
e2a2 in (3.22) and e25., in (4.11) are of the same order as uo contrary to our implicit 
assumption that e2a2 and e2d2 are small corrections to v0. 

To determine an expansion valid when k - 1 = O(e2) ,  we notice that, although 
To = t = O ( l ) ,  aoT0 = a,t = O(e).  Hence the appropriate time scales in this case 
are !Pl = d and T, = c2t. We find here the variation of ~ ( x ,  t )  and $(x, y, t )  with 
respect to the time scale Tl which we denote by 7. We let 

k2- 1 = a$, (6.1) 

where a = 0(1) and may be positive or negative. 

q420 = O(a,). Therefore we assume the following expansions: 
Equations (4.1)-(4.4) indicate that ylo = O ( l ) ,  &,= O(g,,), T~~ = O(ai) and 

Substituting these expansions in (2.12)-(2.16) leads to the following equations 
for ylo and &,: 

%0 + &sinh h = 0, 
d7 

Eliminating $lo from (6.6) and (6.7) leads to 

%'+ (ay lo-~y~o~lO) tanhh = 0. 
a72 

For travelling waves, we let rl0 = &(T) ei@(r), separate real and imaginary 

(6.9) 
parts in (6.8), and obtain aqa7 = 0, 

(6.10) 
a22 d7 + ( ax  - $23) tanh h = 0. 

Equation (6.9) shows that the travelling waves are reduced to standing waves 
because 8 is a constant. Therefore, analysis of (6.10) yields solutions for travelling 
as well as standing waves. From (2.8) and (2.9), we get 

z(0) = 1 and dz(0)ld.r = 0. (6.11) 

A first integral of (6.10) using (6.11) is 

($)' = &tanhh(z2- 1) (z2+ 1 - 1 6 4 3 ) .  (6.12) 
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Since z(r) is real and z ( 0 )  = 1, x cannot decrease from 1 if (16a/3- 1) < 1, 
otherwise dz /dr  will be imaginary. As a result dz ldr  is positive, and hence z 
increases without limit. In  this case, we have instability, and the solution of 
(6.11) and ((3.12) is (Pierce & Foster 1957, pp. 73-4) 

sn-l ( l /z ,  b,) = sn-l(l, b,) - $( 3 tanh h)* T ,  (6.13) 

for b: = 1 6 4 3  - 1,b,  < 1. In the case of bi = 1 - 1 6 4 3 ,  the solution of (6.1 1) and 
(6.12) becomes en-, [ l/z, b2( 1 + b;)- l ]  = $[3( 1 + b i )  tanh h]* 7. (6.14) 

On the other hand, if 16a/3- 1 = b: > 1, then z2 is bounded between 0 and 1. In  
this case, we have stability, and the solution of (6.11) and (6.12) is 

sn--l(z, l / b 3 )  = sn-l( 1, l /b3) - $(3 tanhh)tb3T. (6.15) 

Therefore a = H  8 (6.16) 

separates the stable and unstable regions. Using (6.1), we find that the cut-off 

(6.17) 
wave-number is given by 

which is in agreement within O(e2)  with the cut-off wave-number we obtained 
earlier (equation (5.12)). 

k2 = 1 + # € 2 ,  

7. Discussion and conclusions 
The present theory shows that the cut-off wave-number is amplitude 

dependent, contrary to the predictions of the linear theory of Bellman & Penning- 
ton (1954). The cut-off wave-number is given by 

kl. = k,[l + # a 2 k ~ + & $ - a 4 k ~ ] h + O ( a 6 ) ,  (7.1) 
where k, is the linear cut-off wave-number and a is the disturbance amplitude. 
Therefore disturbances with wave-numbers equal to k, still grow. 

In non-dimensional quantities, and for k -  1 = O(O), y < 2, travelling waves 
are given by 

whereas standing waves are given by 

r ( x ,  t )  = 8 cos[(cr, + € 2 a 2 )  t + x3 + 0(e2), 

r(x, t )  = € cos (go + S2S2) t cos x + O(82). 

(7.2) 

(7.3) 

For k > k:/k, but k - 1 = O(e2),  the wave velocity of a travelling wave is so slow 
that it appears as a standing wave. The solution for 7 in this case is 

r(z, t )  = a ( t ;  E) cosx+ O ( E 2 ) ,  (7.4) 

where x ( t ;  6 )  is periodic and given by an elliptic integral. 
Therefore travelling as well as standing disturbances with wave-numbers 

larger that kl. oscillate with time-independent amplitudes and hence are stable. 
However, the wave velocity in the case of travelling waves and the frequency 
in the case of standing waves are amplitude dependent. For large h and k, 
a 2 -  - -&k and 8, = -Qfk. As k decreases the difference between a2 and S2 
decreases, and vanishes when k - 1 = O(e2).  Hence, the non-linear standing waves 
(7.3) cannot be obtained by the superposition of the travelling waves (7.2) as 
in the linear case. 
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Equation (7.1) shows that the cut-off wave-number is independent of the layer 
thickness. However, decreasing the layer thickness decreases the growth rate 
of unstable disturbances, and hence is stabilizing. 

The physical model used in the present theory, as in the theories of Emmons 
et al. (1960) and Rajappa (1967), does not explain the overstability behaviour 
observed by Emmons et al. (1960). They observed that disturbances with k > 1 
oscillate in time with an ever-increasing amplitude; whereas the theory indicates 
oscillations with time-independent amplitudes. 

To explain the overstability behaviour, let us first describe briefly the experi- 
mental apparatus of Emmons et al. (1960). They used an apparatus consisting 
of an aluminium frame with glass front and back walls. The frame is partially 
filled with liquid, and restrained to move in a vertical direction between two 
guide columns. They accelerated this frame and its contents by holding the frame 
a t  the top of the two guides by a steel wire while tension was applied to rubber 
tubes attached to the bottom of the frame. They began the runs by passing 
an electric current through the steel wire, melting it and releasing the frame. 
Since the force applied by the rubber tubes is proportional to their extensions, 
the acceleration applied to the frame and its contents is 

s“ = ZOwf2COS~ftr-g0, (7.5) 

where go is the gravitational acceleration and zo and w r 2  are the initial extension 
and the spring constant of the rubber tubes. Equation (7.5) shows that the 
acceleration applied to the system by the rubber tubes is not constant, and hence 
we take its time variation into account in the following analysis. 

If we assume that 

g‘ = zow’2-go, qr = zowf2/g‘ ,  e = go/g’, w = w’(g‘k’)-*, (7.6) 

(7.7) 

then (2.5) is modified to 

- (9’ cos wt - e )  7 - & + +(@ + q5:) = k2qzz( 1 + qi)-Q. 

Then (3.2) becomes 

?&lo cosh h - [k2 + e - qr cos @To] ql0 = 0.  
aT0 

Eliminating between (3.1) and (7.8) leads to 

a%0 + (8-  29 cos 2T) qlo = 0,  
aT2 (7.9) 

where T = &To, 6 = 4(k2 + e )  tanh h/02 ,  and q = 2q‘ tanh h i d .  This is the familiar 
Mathieu equation (Whittaker & Watson 1962, pp. 404-28) which has stable or 
unstable solutions depending on the values of S and q, and hence the disturbance 
wave-number and the rubber spring constant. The unstable solutions are 
either oscillating with exponentially growing amplitudes, or non-oscillating 
exponentially increasing. Since there were small variations in the initial con- 
ditions (Emmons, Chang & Watson 1960), it is possible that one of these wave- 
numbers, or the primary wave-number, corresponds to an unstable solution 
of (7.9),  and hence produced the overstable behaviour. 
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Another possible explanation for the overstability behaviour is the interaction 
among different Fourier components which might be present due to the small 
variations in the initial conditions. However, the limitation imposed by (2.8) 
on the theory does not alIow the assessment of this possibility. 
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